Устройство и принцип работы лазерного принтера

принцип работы лазерного принтера

Устройство и принцип работы лазерного принтера

Множество людей пользовались лазерными принтерами, у некоторых они стоят дома, но все ли знают, как работает лазерный принтер? Ответ на этот вопрос читатель найдет в этой статье.

Лазерный принтер – это периферийное устройство, которое быстро и качественно напечатает текст и графические объекты на обычной офисной и специальной бумаге.

Основные преимущества этих принтеров, такие как низкая себестоимость печати, большая скорость работы, высокий ресурс и разрешение, стойкость к влаге и выцветанию сделали их самыми часто используемыми не только в среде офисных работников, но и среди обычных пользователей.

Создание и развитие лазерных принтеров

Первое изображение с использованием сухих чернил и статичного электричества получил Честер Карлсон в далеком 1938 году. И лишь спустя 8 лет он смог найти производителя изобретенных им устройств. Это была компания, которую ныне все знаю под названием Xerox.

И в тот же 1946 год на рынок попадает первое копировальное устройство. Это была огромная и сложная машина, требующая проведения целого ряда ручных операций.

Лишь в средине 1950-х был создан первый полностью автоматизированный механизм, который являлся прообразом современного лазерного принтера.

С конца 1969 года Xerox начинает работу над разработкой лазерных принтеров, добавив лазерный луч к существующим на то время образцам. Но стоял он треть миллиона долларов по тем меркам и имел огромные размеры, что не позволяло пользоваться таким устройством даже на небольших предприятиях, не то что в быту.

первый персональный лазерный принтер от компании HP

Результатом сотрудничества нынешних гигантов в индустрии печати Canon и HP стал выпуск в свет серии принтеров LaserJet, которые способны напечатать до 8 страниц текста в минуту. Такие устройства стали более доступными после того, как появился первый сменяемый картридж для лазерного принтера.

Принцип работы

Основой формирования изображения является краситель, содержащийся в тонере. Под действием статического электричества он прилипает и буквально впечатывается в бумагу. Но каким образом это происходит?

Любой лазерный принтер состоит из трех основных функциональных блоков: печатная плата, блок переноса изображения (картридж) и печатный блок. Бумагу на печать подает узел подачи бумаги. Они разрабатываются по двум конструкциям – подача бумаги из нижнего лотка и подача из верхнего лотка.

Его строение достаточно простое:

  • ролик – нужен для захвата бумаги;
  • блок для захвата и подачи одного листа;
  • ролик, передающий статический заряд бумаге.
  • Картридж для лазерного принтера состоит из двух частей – это тонер и барабан или фотоцилиндр.

Тонер

Тонер состоит из микроскопических частичек полимеров, которые покрыты красителем, с включением магненита и регулятора заряда.  Каждая фирма выпускает порошок с уникальными характеристиками для собственных принтеров и многофункциональных устройств. Все порошки отличаются магнитностью, плотностью, дисперстностью, размером зерен и другими физическими показателями.

Поэтому не стоит заправлять картриджи случайным тонером. Преимущества тонера перед чернилами заключаются в четкости отпечатанной картинки и влагостойкости, которая обеспечивается впечатыванием порошка в бумагу.

Из недостатков стоит назвать малую глубину цветов,  насыщенность при цветной печати и отрицательное воздействие на организм человека при взаимодействии с тонером, например, во время зарядки картриджа.

Строение и этапы печати изображений

Фотобарабан выполнен в виде продольного алюминиевого вала, с нанесенным на него тонким слоем материала, чувствительного к световым лучам с определенными параметрами. Цилиндр покрыт защитным слоем. Помимо алюминия, барабаны изготовляются с неорганических фоточувствительных веществ. Основное свойство фотобарабана – изменение проводимости (заряда) под воздействием лазерного луча.

Это значит, что если цилиндру придать заряд – он будет хранить его на протяжении значительного отрезка времени. Но если засветить какую-либо область вала светом – они тут же теряют свой заряд и становятся нейтрально заряженными за счет увеличения проводимости (то есть уменьшением электрического сопротивления) в этих зонах. Заряд стекает с поверхности через внутренний проводящий слой.

При поступлении документа на печать, печатная плата обрабатывает его и посылает соответствующие световые импульсы на блок переноса изображения, где цифровая картинка превращается в изображение на бумаге.

Фотобарабан вращается при помощи вала и получает первичный отрицательный или положительный заряд от находящегося рядом роллера. Его величина определяется настройками печати, которые сообщает печатная плата.

После зарядки цилиндра лазерный луч, имеющий горизонтальную развертку, сканирует его с огромной частотой. Засвеченные места фотоцилиндра, как сказано выше, становятся незаряженными.

Эти незаряженные зоны формируют требуемую картинку на барабане в зеркальном отображении. Далее, чтобы изображение оказалось на бумаге, незаряженные зоны необходимо заполнить тонером.

Блок лазерного сканирования состоит из зеркала, полупроводникового лазера, нескольких формирующих и одной фокусирующей линзы.

Барабан контактирует с роллером, изготовленным, в основном, из магния и подает тонер на фотоцилиндр из емкости картриджа. Роллер, в котором расположен постоянный магнит, выполнен в виде пустотелого цилиндра с токопроводящим слоем. Под воздействием магнитного поля тонер из бункера притягивается к роллеру под действием силы намагниченного сердечника.

Под действием электростатического напряжения тонер из роллера будет переноситься на сформированное лазерным лучом изображение на поверхности фотобарабана, крутящегося вплотную с роллером.

Тонеру некуда деться, ведь его отрицательно заряженные частицы притягиваются к положительно заряженным областям фотоцилиндра, на котором сформировано нужное изображение.

Отрицательный заряд барабана отталкивает ненужное количество тонера назад, заполняя им отсканированные лазером участки.

Отметим один нюанс. Существует два типа формирования изображений. Самый распространенный – это применение тонера с положительным зарядом. Такой порошок остается на нейтрально заряженных областях фотоцилиндра.

То есть, лазером засвечиваются области, где будет наше будущее изображение. Барабан при этом заряжен отрицательно. Второй механизм менее распространенный, в нем используется тонер с отрицательным зарядом.

Лазерный луч «разряжает» области положительно заряженного фотоцилиндра, на которых изображения быть не должно.

Это стоит помнить при выборе лазерного принтера, ведь в первом случае будет более точная передача деталей, а во втором – более равномерная и плотная заливка. Первые принтеры отлично подойдут для печати текстовых документов, потому они и получили широкое распространение.

Перед тем, как соприкоснуться с цилиндром бумага получает статический электрический заряд с помощью ролика переноса заряда. Под воздействием, которого тонер притягивается к бумаге в момент ее плотного контакта с барабаном. Сразу после этого заряд из бумаги удаляется нейтрализатором статичного заряда.

Этим устраняется притягивания листа к фотоцилиндру. Во время прохода бумаги сквозь блок лазерного сканирования на листе становится заметным сформированное изображение, которое легко разрушается от малейшего прикосновения. Для его долговечности необходимо провести фиксацию с помощью расплавления добавок, входящих в тонер.

  Этот процесс происходит в блоке фиксации изображения – это третий ключевой блок лазерного принтера. Еще его называют «печкой». Если вкратце, то плавятся входящие в состав тонера вещества. После их вдавливания и застывания эти полимеры словно покрывают собой чернила, защищая их от внешних воздействий.

Теперь читатель поймет, почему отпечатанные листы, выходящие из принтера, такие теплые.

По конструкции так называемая «печка» состоит из двух валов, в одном из которых находится нагревательный элемент. Второй, зачастую нижний, необходим для вдавливания расплавленного полимера в бумагу. Нагревательные элементы выполняются в виде термисторов, изготовленных в виде термопленок.

При подаче напряжения на них, эти элементы разогреваются до высоких температур (порядка 200 °C) за доли секунды. Прижимный валик прижимает лист к нагревателю, в процессе чего осуществляется вдавливание жидких микроскопических частиц тонера в текстуру бумаги.

На выходе из блока фиксации стоят разделители, дабы бумага не прилипала к термопленке.

Как работает лазерный принтер

Устройство и принцип работы лазерного принтера

Лазерный принтер Xerox 9700

История лазерных принтеров началась в 1938 году с разработки технологии печати сухими чернилами. Честер Карлсон, работая над изобретением нового способа переноса изображений на бумагу, использовал статическое электричество.

Метод получил название электрографии и впервые был использован корпорацией Xerox, выпустившей в 1949 году копировальный аппарат Model A. Однако для работы этого механизма отдельные операции требовалось производить вручную.

Через 10 лет был создан полностью автоматический Xerox 914, который считается прообразом современных лазерных принтеров.

Идея «нарисовать» то, что позднее должно быть распечатано, непосредственно на копировальном барабане лазерным лучом принадлежит Гэри Старквитеру (Gary Starkweather). Начиная с 1969 года, компания занималась разработкой и в 1977 году выпустила серийный лазерный принтер Xerox 9700, который печатал со скоростью 120 страниц в минуту.

Лазерный принтер Canon LBP-CX

Аппарат был очень большим, дорогим, предназначался исключительно для предприятий и учреждений. А первый настольный принтер разработала Canon в 1982, через год – новая модель LBP-CX. Компания HP в результате сотрудничества с Canon в 1984 году начала производство серии Laser Jet и сразу же заняла лидирующее положение на рынке лазерных принтеров для домашнего пользования.

В настоящее время монохромные и цветные печатающие устройства выпускаются многими корпорациями. Каждая из них использует собственные технологии, которые могут существенно различаться, но общий принцип работы лазерного принтера характерен для всех устройств, а процесс печати можно разделить на пять основных этапов.

Заряд фотобарабана

Фотобарабан

Печатающий барабан (Optical Photoconductor, OPC) – это металлический цилиндр, покрытый фоточувствительным полупроводником, на котором формируется изображение для последующей печати. Вначале OPC снабжается зарядом (положительным или отрицательным). Сделать это можно одним из двух способов используя:

  • коротрон (Corona Wire), или коронатор;
  • ролик заряда (Primary Charge Roller, PCR), или заряжающий вал.

Коротрон представляет собой блок из проволоки и металлического каркаса вокруг нее.

Провод коронатора – это вольфрамовая нить с углеродным, золотым или платиновым покрытием. Под действием высокого напряжения между проволокой и каркасом возникает разряд, светящаяся ионизированная область (корона), создается электрическое поле, которое передает статический заряд фотобарабану.

Коротрон заряда Xerox 013R00650

Обычно в блок встраивается механизм, очищающий провод, так как его загрязнение сильно ухудшает качество печати. Использование коротрона имеет определенные недостатки: царапины, скопление пыли, частичек тонера на нити или ее изгиб может привести к усилению электрического поля в этом месте, резкому снижению качества распечаток, и, возможно, повреждению поверхности барабана.

Решением этих проблем стал ролик заряда или, представляющий собой металлический вал, покрытый токопроводящей резиной или поролоном. Соприкасаясь с OPC, он снабжает зарядом фоточувствительную поверхность барабана.

При этом напряжение на ролике гораздо ниже, что решило проблему с образованием озона, но для передачи заряда необходимо соприкосновение, следовательно, детали изнашиваются быстрее.

Кроме того, поверхность вала заряда необходимо чистить.

Экспонирование

Лазерный блок Samsung ML1430

Если какую-то часть фоточувствительного полупроводника, покрывающего OPC, осветить, он становится токопроводящим, а полученный от ролика заряд уйдет через металлическое основание барабана. Экспонированный участок становится незаряженным или слабо заряженным. Цель этого этапа – сформировать на фоточувствительной пленке невидимое изображение из точек без статического заряда.

Очень тонкий лазерный луч светит на вращающееся зеркало шестигранной (иногда четырехгранной) формы, отражаясь, попадает на распределяющую линзу, которая отправляет его в нужное место на поверхности фотобарабана.

Система зеркал и линз перемещает луч вдоль OPC, формируя строку. Поскольку печать производится точками, лазер постоянно включается – выключается и снимает заряд тоже точечно.

Как только строка закончена, фотобарабан поворачивается пошаговым двигателем и экспонирование продолжается.

Проявка

Магнитный вал

Еще один вал, имеющийся в картридже, магнитный (Magnetic Developer Roller), представляет собой металлическую трубку с магнитным сердечником внутри. Вал расположен так, что часть его поверхности находится практически в заправочном бункере с тонером и закрывает его словно крышка. Внутри отсека магнит притягивает порошок к поверхности Magnetic Roller, и, вращаясь, выносит тонер наружу.

Чтобы регулировать толщину слоя порошка, предотвратить его неравномерное распределение на поверхности ролика, используется дозирующее лезвие (Doctor Blade, Metering Blade).

Металлический каркас доктора крепится жестко, оставляя между гибкой пластиной на краю дозирующего лезвия и валом определенного размера щель. Таким образом, пропускается лишь тонкий слой порошка, а все лишнее сбрасывается назад в отсек.

Неправильно установленный Doctor Blade – широкая или неровная щель – может стать причиной излишнего просыпания тонера и появления черных полос на распечатанной странице.

Дозирующее лезвие

Далее тонер попадает между магнитным валом и OPC, где на экспонированных участках он притягивается к поверхности барабана, а на заряженных отталкивается.

Порошок, оставшийся на Mag Roller, двигается дальше, снова проходит через бункер, где к освободившимся от тонера участкам магнитного вала притягивается новая порция краски и цикл повторяется.

А тонер, переместившийся на фотобарабан, делает изображение на нем видимым, и следует к бумажному носителю.

Перенос

Страница, подающаяся в принтер, проходит под фотобарабаном. Чтобы тонер, находящийся на поверхности OPC, попал на лист, под бумагой располагается вал переноса изображения (Transfer Roller). На металлическую сердцевину ролика подается положительный заряд, который переносится на страницу через покрытие из мягкой резины.

Ролик переноса HP LJ 4050

Частицы тонера отрываются от барабана и перемещаются на лист, но держатся на нем только благодаря статическому притяжению. Можно сказать, что тонер просто насыпан в нужных местах.

Пыль, ворсинки бумаги, частички порошка снимаются с фотобарабана и отправляются в бункер отходов ракелем, или вайпером (Wiper Blade, Cleaning Blade), представляющим собой гибкую полиуретановую пластину, закрепленную на металлическом каркасе. Теперь, когда барабан уже сделал полный круг, коротрон (или ролик) снова восстанавливает заряд на поверхности OPC и цикл повторяется.

Закрепление

Одно из обязательных свойств тонера – способность плавиться при высокой температуре. Именно таким образом порошок закрепляется на бумаге, проходя через термоблок, или печку, где температура достигает 180–220° C.

Тефлоновый вал

Страница протягивается между двумя валами, верхний – Upper Fuser Roller – разогревает, а нижний – Lower Pressure Roller – прижимает лист, заставляя тонер вплавляться в структуру бумаги.

После выхода из печки, тонер быстро застывает, изображение становится устойчивым.

Прижимной ролик – резиновый или силиконовый на металлическом основании, Fuser Roller имеет более сложную конструкцию и бывает двух видов:

  • тефлоновый вал,
  • термопленка.

Первый вариант надежный и долговечный, но и более дорогой, чаще используется в принтерах, способных выдерживать большие нагрузки и предназначенных для офисов. Внутрь полого цилиндра с тефлоновым покрытием вставляется лампа, которая служит нагревательным элементом, а специальный датчик отключает ее, когда температура достигает критической отметки.

Остывание происходит естественным путем, дополнительная система охлаждения не требуется. Но предусмотрен очиститель тефлонового покрытия – фетровый вал, выполняющий роль полотенца и собирающий остатки тонера и пыли с нагревающего ролика. Кроме того, фетр, пропитанный специальным составом, не только чистит, но и смазывает покрытие.

По этой причине его часто называют масляным валом.

Нагревательный элемент и термопленка HP LJ 1200

Во втором варианте несущую конструкцию с нагревательным элементом внутри обертывает гибкая пленка, сделанная из специальной термоустойчивой пластмассы.

Технология считается менее надежной, используется в принтерах для малого бизнеса и домашнего использования, где не ожидается больших нагрузок оборудования.

Для предотвращения прилипания листа к печке и закручивания его вокруг вала предусмотрена планка с отделителями бумаги.

Цветная печать

Для формирования цветного изображения используются четыре основных цвета:

  • черный,
  • желтый,
  • пурпурный,
  • голубой.

Печать осуществляется по тому же принципу, что и черно-белая, но прежде принтер разбивает картинку, которую нужно получить, на монохромные изображения для каждого из цветов. В процессе работы цветные картриджи переносят на бумагу свои рисунки, а их наложение друг на друга дает итоговый результат. Существует две технологии цветной печати.

Многопроходная

Принтер Brother HL-4050CDN

При этом способе используется промежуточный носитель – вал или лента переноса тонера.

За один оборот на ленту наносится один из цветов, затем в нужное место подается другой картридж и поверх первого изображения накладывается второе.

За четыре прохода на промежуточном носителе формируется полное изображение, которое переносится на бумагу. Скорость печати цветного изображения в принтерах, использующих эту технологию, в четыре раза меньше, чем монохромного.

Однопроходная

Принтер включает в себя комплекс из четырех отдельных печатающих механизмов под общим управлением. Цветные и черный картриджи выстроены в линейку, каждому соответствует отдельный лазерный блок и ролик переноса, а бумага проходит под фотобарабанами, последовательно собирая все четыре монохромных изображения. Только после этого лист попадает в печку, где тонер закрепляется на бумаге.

Однопроходная печать

Печатайте с удовольствием.

Цветные лазерные принтеры. Как они работают

Устройство и принцип работы лазерного принтера

Цветные лазерные принтеры начинают активно завоевывать рынок печати.

Если еще несколько лет назад цветная лазерная печать была для большинства организаций и тем более для отдельных граждан чем-то недосягаемым, то сейчас купить цветной лазерный принтер может позволить себе весьма широкий круг пользователей. Быстрорастущий парк цветных лазерных принтеров приводит к тому, что растет и интерес к ним со стороны служб технической поддержки.

Принципы цветной печати

В принтерах, как и в полиграфии для создания цветных изображений применяется субтрактивная цветовая модель, а не аддитивная, как в мониторах и сканерах, в которых любой цвет и оттенок получается смешением трех основных цветов – R (красный), G (зеленый), B (синий).

Субтрактивная модель цветоделения называется так потому, что для образования какого-либо оттенка надо вычесть из белого цвета “лишние” составляющие. В печатающих устройствах для получения любого оттенка в качестве основных цветов используют: Cyan (голубой, бирюзовый), Magenta (пурпурный), Yellow (желтый).

Эта цветовая модель получила название CMY по первым буквам основных цветов.

В субтрактивной модели при смешивании двух или более цветов дополнительные цвета получаются посредством поглощения одних световых волн и отражения других.

Голубая краска, например, поглощает красный цвет и отражает зеленый и синий; пурпурная краска поглощает зеленый цвет и отражает красный и синий; а желтая краска поглощает синий цвет и отражает красный и зеленый.

При смешивании основных составляющих субтрактивной модели можно получить различные цвета, которые описаны ниже:

Голубой + Желтый = Зеленый

Пурпурный + Желтый = Красный

Пурпурный + Голубой = Синий

Пурпурный + Голубой + Желтый = Черный

Стоит отметить, что для получения черного цвета необходимо смешать все три составляющие, т.е. голубой, пурпурный и желтый, однако получить качественный черный цвет таким образом, практически невозможно. Получаемый цвет будет не черным, а скорее грязно-серым.

Для устранения такого недостатка к трем основным цветам добавляется еще один – черный. Такая расширенная цветовая модель называется CMYK (Cyan-Magenta-Yellow-blacK – голубой-пурпурный-желтый-черный).

Введение черного цвета позволяет значительно повысить качество цветопередачи.

Принтер HP Color LaserJet 8500

После того, как мы обсудили общие принципы построения и работы цветных лазерных принтеров, стоит ознакомиться более подробно с их устройством, механизмами, модулями и блоками. Это лучше всего сделать на примере какого-нибудь принтера. В качестве такого примера давайте возьмем принтер фирмы Hewlett-Packard Color LaserJet 8500.

Основными его характеристиками являются:- разрешающая способность: 600 DPI;- скорость печати в “цветном” режиме: 6 стр/мин.;

– скорость печати в “черно-белом” режиме: 24 стр./мин.

Основные узлы принтера и их взаимное расположение приводится на рис.5.

Далее рассмотрим, как создается изображения в этом принтере. Его система формирования изображения представлена на рис.6.

Формирование изображения начинается с того, что с поверхности фотобарабана снимаются (нейтрализуются) остаточные потенциалы. Это делается для того, чтобы последующий заряд фотобарабана был более равномерным, т.е.

перед зарядом он полностью разряжается.

Снятие остаточных потенциалов осуществляется путем засвечивания всей поверхности барабана специальной лампой предварительного (кондиционирующего) экспонирования, которая представляет собой линейку светодиодов (рис.7).

Далее на поверхности фотобарабана создается высоковольтный (до -600В) отрицательный потенциал. Заряжается барабан коротроном в виде ролика из токопроводящей резины (рис.8). На коротрон подается переменное напряжение синусоидальной формы с отрицательной постоянной составляющей.

Переменная составляющая (АС) обеспечивает равномерное распределение зарядов на поверхности, а постоянная составляющая (DC) заряжает барабан.

Уровень постоянной составляющей может регулироваться при изменении плотности печати (плотности тонера), что делается с помощью драйвера принтера или регулировками через панель управления. Увеличение отрицательного потенциала приводит к уменьшению плотности, т.е.

к более светлому изображению, уменьшение же потенциала – наоборот, к более плотному (темному) изображению. Фотобарабан (его внутренняя металлическая основа) должен быть обязательно “заземлен”.

После всего этого на поверхности фотобарабана лазерным лучом создается изображение в виде заряженных и незаряженных участков. Световой пучок лазера, попадая на поверхность барабана, разряжает данный участок. Лазером засвечиваются те участки барабана, на которых должен быть тонер.

Те участки, которые должны быть белыми, лазером не засвечиваются, и на них остается высокий отрицательный потенциал. Луч лазера перемещается по поверхности барабана с помощью вращающегося шестигранного зеркала, находящегося в сборке лазера. Изображение на барабане называют скрытым электрографическим изображением, т.к.

оно представлено в виде невидимых электростатических потенциалов.

Скрытое электрографическое изображение становится видимым после прохождения через узел проявки. Проявительный модуль черного тонера является стационарным и находится в постоянном соприкосновении c фотобарабаном (рис.9).

Цветной проявительный модуль представляет собой карусельный механизм с поочередной подачей “цветных” картриджей к поверхности барабана (рис.10). Черный тонер-порошок является магнитным однокомпонентным, а цветные порошки – однокомпонентные, но немагнитные.

Любой тонер-порошок заряжается до отрицательного потенциала за счет трения о поверхность проявительного вала и дозировочный ракель.

За счет разности потенциалов и кулоновского взаимодействия зарядов, отрицательно заряженные частички тонера притягиваются к тем участкам фотобарабана, которые разряжены лазером и отталкиваются от участков с высоким отрицательным потенциалом, т.е. от тех, которые не засвечивались лазером.

В каждый момент времени осуществляется проявка тонером только одного цвета. В момент проявки на проявительный вал подается напряжение смещения, которое вызывает перенос тонера с проявительного вала на фотобарабан.

Это напряжение представляет собой переменное напряжение прямоугольной формы с отрицательной постоянной составляющей. Уровень постоянной составляющей может регулироваться при изменении плотности тонера. После окончания процедуры проявки изображение на фотобарабане становится видимым, и его необходимо перенести на барабан переноса.

Поэтому следующим этапом в создании изображения является передача проявленного изображения на барабан переноса. Этот этап называют этапом первичного переноса. Перенос тонера с одного барабана на другой происходит за счет электростатической разности потенциалов, т.е.

отрицательно заряженные частички тонера должны притянуться положительным потенциалом на поверхности барабана переноса.

Для этого на поверхность барабана переноса подается положительное напряжение смещения постоянного тока от специального источника питания, в результате чего вся поверхность этого барабана имеет положительный потенциал. При полноцветной печати напряжение смещения на барабане переноса должно постоянно увеличиваться, т.к.

после каждого прохода количество отрицательно заряженного тонера на барабане возрастает. И для того, чтобы тонер мог переноситься и ложиться поверх уже существующего тонера, напряжение переноса увеличивается с каждым новым цветом. Этот этап формирования изображения показан на рис.11.

В процессе переноса тонера на барабан переноса отдельные частички тонера могут остаться на поверхности фотобарабана, и они должны быть удалены, чтобы не искажать последующее изображение. Для удаления остатков тонера в принтере имеется блок очистки фотобарабана (см. рис 17).

В составе этого модуля имеется специальный вал – кисть для снятия заряда с тонера и фотобарабана – это ослабляет силу притяжения тонера к фотобарабану.

Также имеется традиционный очистительный ракель, который соскребает тонер в специальный бункер, где он и хранится до тех пор, пока очистительный модуль не будет заменен или не будет вычищен.

Далее фотобарабан снова заряжается (после предварительного разряда), и процесс повторяется до тех пор, пока на барабане переноса не будет полностью сформировано изображение соответствующего цвета. Поэтому размер барабана переноса должен полностью соответствовать формату печати, т.е.

в данной модели принтера длина окружности этого барабана соответствует длине листа формата А3 (420 мм). После нанесения тонера одного цвета процесс формирования изображения полностью повторяется с той лишь разницей, что используется проявительный блок другого цвета.

Для использования другого проявительного узла карусельный механизм поворачивается на заданный угол и подводит “новый” проявительный вал к поверхности фотобарабана.

Таким образом, при формировании полноцветного изображения, состоящего из четырех цветовых составляющих, барабан переноса проворачивается четыре раза, и на каждом обороте к уже существующему тонеру добавляется тонер другого цвета.

При этом первым наносится порошок желтого цвета, потом пурпурного, потом голубого и уже последним наносится черный порошок. В итоге, на барабане переноса создается полноцветное видимое изображение, состоящее из частичек четырех разноцветных тонер-порошков.

После того, как тонер-порошок оказывается на поверхности барабана переноса, он проходит через блок дополнительного заряда. Этот блок (рис.12) представляет собой проволочный коротон, на который подается переменное напряжение синусоидальной формы (АС) с отрицательной постоянной составляющей (DC). Этим напряжением тонер порошок дополнительно заряжается, т.е.

его отрицательный потенциал становится выше, что будет способствовать более эффективному переносу тонера на бумагу. Кроме того, дополнительное напряжение уменьшает значение положительного потенциала барабана переноса, что способствует правильному расположению тонера на барабане переноса и препятствует смещению тонера. Как результат этого – точное воспроизведение цветовых оттенков.

Напряжение дополнительного заряда подается на барабан переноса во время нанесения желтого тонера, т.е. в самом начале процесса формирования изображения. При нанесении желтого тонер-порошка напряжение дополнительного заряда устанавливается на минимальное значение, и после нанесения каждого нового цвета это напряжение увеличивается.

Максимальное напряжение дополнительного заряда подается во время нанесения черного тонера.

Далее полноцветное видимое изображение с барабана переноса должно быть перенесено на бумагу. Этот процесс переноса получил название вторичного переноса. Вторичный перенос осуществляется еще одним коротроном, выполненным в виде транспортного ремня (рис.13).

Тонер перемещается на бумагу под действием электростатических сил, т.е. за счет разности потенциалов тонер-порошка (отрицательный) и коротрона вторичного переноса, на который подается положительное напряжение смещения.

Так как вторичный перенос осуществляется только после четырех оборотов барабана переноса, транспортный ремень коротрона должен подать бумагу только тогда, когда все цвета нанесены, т.е.

во время уже четвертого оборота, а до этого момента времени ремень должен быть в таком положении, чтобы бумага не касалась барабана переноса.

Таким образом, транспортный ремень во время создания изображения опущен вниз, и не соприкасается с барабаном переноса, а в момент вторичного переноса поднят вверх и касается этого барабана. Перемещение транспортного ремня коротрона осуществляется эксцентриковым кулачком, который приводится в действие электрической муфтой по команде от микроконтроллера (рис.14).

При вторичном переносе лист бумаги может притягиваться к поверхности барабана переноса за счет разницы электростатических потенциалов. Это может стать причиной накручивания листа бумаги на барабан, и соответственно к замятию бумаги.

Для предотвращения такого явления в составе принтера имеется система отделения бумаги и снятия с нее статического потенциала. Система представляет собой коротрон, на который подается переменное напряжение синусоидальной формы с положительной постоянной составляющей.

Расположение коротрона относительно бумаги и барабана переноса показано на рис.15.

На этапе вторичного переноса некоторые частички тонера не переносятся на бумагу, а остаются на поверхности барабана. Чтобы эти частички не мешали созданию следующего листа и не искажали изображения необходимо произвести очистку барабана переноса и удалить остатки тонера.

Очистка барабана переноса является достаточно сложным процессом. Для этой процедуры задействуется специальный ролик очистки, фотобарабан и блок очистки фотобарабана. Очистка барабана переноса должна осуществляться не постоянно, а только после вторичного переноса, т.е.

система очистки должна управляться аналогично коротрону переноса. Пока создается изображение, система очистки не активна, а когда начинается перенос тонера на бумагу – включается. Первым этапом очистки является перезаряд остаточного тонер-порошка, т.е.

его потенциал меняется с отрицательного на положительный. Для этого применяется ролик очистки, на который подается переменное синусоидальное напряжение с положительной постоянной составляющей.

Этот ролик прижимается к поверхности фотобарабана в период очистки, а в процессе создания изображения он откидывается. Управляется ролик эксцентриковым кулачком, который в свою очередь приводится в действие соленоидом (рис.16).

После этого положительно заряженный тонер переносится на фотобарабан, на котором по-прежнему имеется отрицательное напряжение смещения. И уже с поверхности фотобарабана тонер счищается очистительным ракелем блока очистки фотобарабана (рис.17).

Заканчивается создание полноцветного изображения фиксацией тонера на бумаге с помощью температуры и давления.

Лист бумаги проходит между двумя роликами блока фиксации (печки), разогревается до температуры порядка 200 ºС, тонер расплавляется и вдавливается в поверхность бумаги.

Для предотвращения прилипания тонера к печке на нагревательный вал подается отрицательное напряжение смещения, в результате чего отрицательный тонер-порошок остается на бумаге, а не на тефлоновом валу.

Мы рассмотрели принцип работы только одного принтера одной фирмы. Другими производителями могут применяться и иные принципы формирования изображения и другие технические решения при построении принтеров, однако, все эти решения будут весьма близки к тем, что были рассмотрены ранее.

Устройство и принцип работы лазерного принтера

Устройство и принцип работы лазерного принтера

Лазерный принтер — это периферийное устройство, предназначенное для быстрой и качественной печати текста и графических объектов на бумаге.

Благодаря таким преимуществам, как низкая себестоимость печати, высокие скорость, ресурс и разрешение, устойчивость к выцветанию и повышенной влажности лазерные принтеры получили самое широкое применение как в офисе, так и для домашнего использования. Рассмотрим принцип работы лазерного принтера.

Принцип работы

Изображение формируется посредством красителя, который содержится в тонере. Под воздействием статического электричества краситель буквально вбивается, впечатывается в бумагу. Это если описать принцип работы лазерного принтера кратко. Но как происходит печать поэтапно?

Любой принтер имеет три основных функциональных блока: печатная плата, блок, с помощью которого осуществляется перенос изображения (картридж) и печатный блок. Узел подачи передает бумагу на печать — в зависимости от конструкции, из нижнего лотка или из верхнего лотка. Картридж состоит из тонера и барабана (фотоцилиндра).

Преимущества тонера по сравнению с печатью чернилами заключаются в четкости и влагоустойчивости полученного изображения, которая достигается именно благодаря впечатыванию порошка в бумагу. Из недостатков обычно называют недостаточность глубины цвета.

Этапы печати изображений

Фотобарабан выполнен из алюминия в виде продольного вала. На него наносится тонкий слой материала, чувствительного к световым лучам определенных параметров.

Главное свойство фотобарабана — способность изменять проводимость под воздействием лазера, то есть если цилиндр получит заряд, то он сохранит его на протяжении определенного промежутка времени.

Но если какую-либо область засветить, то заряд теряется.

Когда документ поступает на печать, плата обрабатывает его и отправляет световые импульсы на блок переноса изображения. Цифровая картинка таким образом преобразовывается в изображение на бумаге. Фотобарабан, вращаясь, получает отрицательный или положительный от роллера заряд, величина которого зависит от настроек, заданных пользователем.

После окончания зарядки цилиндра лазерный луч сканирует его с огромной частотой. Засвеченные места становятся незаряженными — формируется картинка в зеркальном отображении. Чтобы перевести изображение на бумагу, незаряженные зоны заполняются тонером. Блок лазерного сканирования включает зеркало, полупроводниковый лазер, несколько формирующих и одну фокусирующую линзу.

Барабан контактирует с роллером из магния и подает на фотоцилиндр тонер из емкости картриджа. Роллер, где установлен постоянный магнит, имеет вид пустотелого цилиндра, на который нанесен токопроводящий слой. Под влиянием магнитного поля тонер притягивается к роллеру.

Благодаря воздействию электростатического напряжения тонер из роллера переносится на изображение, сформированное на поверхности фотобарабана лазерным лучом.

Отрицательно заряженные частицы тонера притягиваются к областям фотоцилиндра, которые имеют положительный заряд, где и сформировано необходимое изображение.

Ненужное количество тонера отталкивается назад благодаря отрицательному заряду барабана, и таким образом заполняются участки, ранее отсканированные лазером.

Бумага, прежде чем соприкоснуться с цилиндром, получает электрический заряд посредством специального ролика переноса заряда. Под его воздействием тонер в момент плотного контакта с барабаном притягивается к бумаге. Затем заряд с бумаги удаляет нейтрализатор статического заряда.

Таким образом устраняется эффект прилипания листа к фотоцилиндру. Когда бумага проходит сквозь блок лазерного сканирования, на листе становится заметно изображение, которое от малейшего прикосновения легко разрушается.

Чтобы оно было долговечным, нужно его зафиксировать посредством расплавления добавок, которые входят в тонер. Данный процесс осуществляется в блоке, где происходит фиксация изображения, — это третий основной блок лазерного принтера, называемый также печкой.

Вещества, которые входят в состав тонера, плавятся, а потом, застывая, эти полимеры покрывают собой чернила, обеспечивая защиту от внешних воздействий.

Как устроен (работет) современный лазерный принтер

Устройство и принцип работы лазерного принтера

Современные принтеры в большинстве своем по технологии работы подразделяются на лазерные и струйные. Причем, благодаря прогрессу, вторые постепенно покидают рынок «бытовой оргтехники», оставаясь специализированной. В офисах, домах и даже некоторых центрах печати чаще всего можно встретить именно лазерные принтеры.

В бытовом использовании главное отличие струйных принтеров от лазерных заключается в первую очередь в высокой экономичности последних. Расход чернил практически минимален – одного картриджа хватает на несколько тысяч листов с достаточно большой плотностью закрашивания. Кроме того, лазерные принтеры работают очень быстро и не требуют специального сервисного ухода.

Вопреки распространенному мнению, лазерные принтеры не «выжигают» символы на бумаге. Для нанесения изображения используется специальный тонер. Именно он прилипает к бумажному листу, оставляя символы или картинки. К слову, из-за данной особенности технологии цветные лазерные принтеры практически не встречаются, в отличие от монохромных (черно-белых).

Основные функциональные узлы лазерного принтера

Конструкция любого лазерного принтера независимо от конкретной модели, производителя и возможностей включает в себя несколько основных функциональных узлов:

  • барабан. Именно на него наносится тонер посредством электростатического притяжения и отталкивания согласно закону Кулона;
  • ракель. Он предназначен для очистки барабана от остатков тонера перед нанесением нового;
  • коронатор. Это устройство предназначено для электростатической зарядки барабана;
  • лазер и система зеркал. Будучи источником когерентного электромагнитного излучения, он точечно разряжает барабан;
  • магнитный вал. На нем закрепляется тонер для последующего переноса на поверхность барабана;
  • печка. Она предназначена для запекания тонера, оставшегося на бумаге. Поэтому листы, вышедшие из лазерного принтера, имеют достаточно высокую температуру;
  • модель управления (контроллер) – микропроцессорная система, управляющая всем этим оборудованием.

И цветные, и монохромные лазерные принтеры имеют в своей основе именно эти функциональные узлы. Меняется только система и возможности.

Например, в цветных лазерных принтерах установлено четыре барабана – для каждого из фундаментальных цветов (красный, желтый, синий и черный) – и так называемая лента переноса, которая предназначена для передачи изображения, сформированного соответствующими тонерами, на бумагу.

Принцип действия лазерного принтера

Принцип действия лазерного принтера в сокращенном описании довольно прост. Полное же отличается от одной модели к другой, однако некоторые фундаментальные элементы присутствуют в каждом случае:

  • Производится очистка барабана. Ракельный нож убирает с его поверхности прилипший, но не использованный в предыдущем цикле печати тонер;
  • Коронатор производит зарядку поверхности барабана. На ней возникают или положительные ионы, или увеличивается количество отрицательных электронов. Это предназначено для возникновения кулоновских сил.
  • Лазер, управляющийся поворотным зеркалом, частично разряжает поверхность барабана. Тонер сам по себе отрицательно или положительно заряжен. Поэтому он отталкивается от заряженных участков площади барабана и притягивается к разряженным. Опять же, это обусловлено действием кулоновских сил.
  • С поверхности магнитного вала на барабан переносится порошковый тонер.
  • С поверхности барабана прилепившийся к нему тонер переносится на бумажный лист.
  • Бумага отправляется в «печь», состоящую чаще всего из нагревательного элемента в виде галогеновой лампы и прижимного ролика. Тонер закрепляется за счет расплавления под действием высокой температуры и благодаря давлению со стороны закрепленного на пружине вала.
  • Если в цветных лазерных принтерах установлено 4 отдельных барабана и столько же магнитных валов, однако тонер наносится не на саму бумагу непосредственно, а на ленту переноса. Все четыре оттенка сначала наносятся именно на неё. Затем лента переноса прокатывается по бумаге, и разноцветное изображение оказывается на листе. Затем тонер запекается и закрепляется.

    Фундаментальные нетехнологические различия между лазерными и струйными принтерами

    Лазерные принтеры в последнее время более популярны, чем струйные. Если абстрагироваться от технологических различий, то они обладают следующими преимуществами:

    • экономичность. Картриджа лазерного принтера хватает на несколько тысяч листов бумаги с высоким заполнением.
    • возможность заправки. Картриджи лазерного принтера можно дозаправлять тонером при необходимости без риска нарушения их функциональности. Проводить данную операцию можно даже самостоятельно, но стоит быть осторожным, поскольку красящий пигмент отрицательно или положительно заряжен и под действием кулоновских сил быстро прилипает к коже, одежде и другим поверхностям. Картриджи струйного принтера в большинстве случаев заправлять нельзя, поскольку это приводит к нарушению их герметичности. Для некоторых моделей техники такого типа можно использовать системы непрерывной подачи чернил, однако это рассматривается как самовольная модификация и приводит к расторжению гарантийного соглашения.
    • высокая скорость работы. Большинство моделей лазерных принтеров способно печатать до 10 страниц с текстом в минуту. Некоторые работают даже быстрее.
    • отсутствие необходимости в еженедельной печати. Тонер, использующийся в лазерных принтерах, не высыхает и не слипается. Поэтому периодически «прогонять печать», чтобы предотвратить забивание головки, не нужно. Собственно, никакой головки в лазерных принтерах и нет.
    • долговечность отпечатков. Изображения и текст на бумаге, полученные с использованием такой оргтехники, не выцветают и не исчезают со временем под действием высокой влажности воздуха.
    • высокое разрешение изображения. Цветные лазерные принтеры обеспечивают разрешение при печати до 9600 Х 1200 точек на дюйм.

    Впрочем, у них также есть некоторые недостатки по сравнению со струйными принтерами:

    • дороговизна. В среднем лазерный принтер в комплектации «с завода» – то есть с неполными картриджами – стоит в несколько раз больше, чем аналогичный струйный. Для монохромных это 2-3-кратное увеличение цены, для цветных – 10-кратное и выше.
    • дороговизна картриджей и тонера. Расходные материалы для лазерных принтеров стоят в 2-3 раза больше, чем для струйных. Однако стоит учесть, что их лимит использования также в 2-3 раза выше.
    • громоздкость. Лазерные принтеры обычно в несколько раз больше, чем струйные. Это также объясняется сложностью конструкции. Как следствие, они требуют отдельного места для установки.
    • необходимость прогрева перед работой и риск перегрева после продолжительного печатания. Несмотря на то, что в конструкцию «печки» входит специальный термоэлемент, не позволяющий температуре достигнуть критической отметки, в некоторых случаях он может выходить из строя или работать неадекватно. После этого наблюдается перегрев устройства с риском появления системных проблем.
    • малая экологичность. При работе такие устройства выделяют в воздух некоторые вредные соединения, пыль, а также эмитируют инфракрасное и ультрафиолетовое излучение.
    • высокая ресурсоемкость. Вследствие наличия «прожорливых» по отношению к току элементов лазерные принтеры потребляют больше электричества. Более того, пиковая мощность может быть настолько высока, что такая оргтехника не будет работать от бытовых или офисных ИБП.
    • невозможность стабильного повторения полноцветовых изображений вследствие бесконтрольного действия электромагнитных полей.

    Таким образом, лазерные принтеры обладают как достоинствами, так и недостатками по сравнению со струйными. Однако в некоторых сценариях использования они проявляют себя как значительно более оптимальные или полезные, чем аналоги. 

    Устройство и работа лазерных принтеров

    Устройство и принцип работы лазерного принтера

    Здравствуйте дорогие читатели блога о компьютерных периферийных устройствах skanworld.ru. Как Вы уже поняли из заголовка, данную статью я полностью посвятил такому устройству, как лазерный принтер.

    Популярности этого типа принтеров способствует масса достоинств, которыми они обладают.

    Высокое разрешение, большая скорость печати, большой ресурс, экономичность – это те свойства, благодаря которым многие пользователи предпочитают лазерные принтеры другим устройствам печати.

    Немного истории

    Первый опытный образец лазерного принтера был изготовлен фирмой Xerox в 1971 году. Эта модель не попала в серийное производство. Только в 1977году был выпущен первый серийный лазерный принтер Xerox 9700 Electronic Printing System. Он мог печатать 120 страниц в минуту ,но имел огромные размеры и вес и стоил на тот момент около 350 тыс. долларов.

    Первой настольной моделью был лазерный принтер LDR-10 фирмы Canon. В 1984 году Canon и Hewlett-Packard в сотрудничестве выпустили модель HP LaserJet. Этот принтер печатал всего 8 страниц в минуту, но благодаря доступной цене и хорошему качеству печати, очень скоро стал лидером на рынке.

    Следующими этапами было появление сменных картриджей и выпуск цветных лазерных принтеров.

    В процессе развития и совершенствования моделей росли качество печати и производительность лазерных принтеров, а снижение стоимости сделали их доступными каждому. На сегодняшний день лазерные принтеры, наряду со струйными, самые популярные печатающие устройства в мире.

    Устройство и принцип работы монохромного лазерного принтера

    Информация из компьютера попадает в контроллер (1), который преобразует полученный текст или изображение в матрицу точек, которые нужно нанести на бумагу.

    Основным узлом устройства является фотобарабан (2). Это цилиндрический вал с покрытием, способным изменять свою проводимость под воздействием света. Поверхность этого вала получает отрицательный заряд от зарядного валика (3). Лазерный луч (4) отражается от подвижного зеркала (5) и попадает на фотобарабан. Проворачиваясь, зеркало перемещает отраженный луч вдоль барабана.

    Контроллер управляет лазером, включая и выключая его в нужных местах, согласно сформированной матрице. Благодаря этому засвечиваются участки поверхности фотобарабана, на которые нужно нанести тонер для печати. Под воздействием света они теряют свой заряд.

    Далее поверхность с засвеченными участками проходит мимо магнитного вала (девелопера)(6). Он покрыт отрицательно заряженным тонером из бункера (7). Тонер прилипает к разряженным участкам фотобарабана, формируя на нем зеркальное отображение печатного текста или картинки.

    Продолжая вращение , поверхность фотовала с нанесенным на нее тонером соприкасается с бумагой, которая подается к нему через роликовый узел (8) из лотка (9) мимо вала переноса (10). Вал переноса сообщает бумаге положительный заряд, благодаря которому тонер с фотобарабана переносится на подаваемый лист. Остатки тонера счищаются чистящим ножом (11).

    Последний этап в работе лазерного принтера – закрепление тонера на бумаге, путем запекания его в печке (12), которая представляет собой два вала (нагревательный и прижимной), между которыми проходит лист. При прокатывании через печку тонер нагревается до температуры порядка 200 градусов цельсия, а затем быстро остывает, надежно фиксируясь на бумаге.

    Цветная лазерная печать

    Цветные лазерные принтеры работают аналогично, но для формирования цветного изображения понадобится четыре прохода бумаги через барабан (по одному проходу для каждого цвета). Альтернативными способами, используемыми в лазерных принтерах, являются формирование цветного изображения на ремне передачи перед переносом тонера на бумагу, либо использование четырех фотобарабанов.

    В дополнение к вышесказанному, хочу предложить Вам видео о работе лазерного сканера от Discovery channel.

    Понравилась статья? Поделиться с друзьями:
    Все о сантехнике
    1 / 9
    2 / 9
    3 / 9
    4 / 9
    5 / 9
    6 / 9
    7 / 9
    8 / 9
    9 / 9