Сколько кадров в секунду видит муха и сколько у неё глаз

Сколько кадров в секунду видит муха и сколько у неё глаз

Зрительный аппарат мухиГлаза у мухи

Все люди знают, что поймать или прихлопнуть муху очень сложно: она очень хорошо видит и моментально реагирует на любые движения, взлетая вверх. Разгадка кроется в уникальном зрении этого насекомого. Ответ на вопрос о том, сколько глаз у мухи, поможет понять причину ее неуловимости.

Устройство зрительных органов

Домашняя или обыкновенная муха имеет черно-серый окрас туловища длиной до 1 см и немного желтоватое брюшко, 2 пары серых крыльев и голову с большими глазами. Она относится к самым древним жителям планеты, о чем свидетельствуют данные археологов, обнаруживших экземпляры, датируемые 145 млн. лет.

При рассмотрении головы мухи под микроскопом можно увидеть, что у нее очень оригинальные объемные глаза, расположенные с двух сторон.

Как видно на фото глаз мухи, они похожи визуально на мозаику, составленную из 6-гранных структурных единиц, которые называют фасетками или омматидиями, похожими на строение медовых сот.

В переводе с французского слово «fasette» означает грани. Благодаря этому глаза называют фасеточными.

Как понять, что видит муха по сравнению с человеком, у которого зрение является бинокулярным, т. е. составляется из двух картинок, которые видят 2 глаза? У насекомых зрительный аппарат устроен более сложно: каждый глаз состоит из 4 тыс.

фасеток, показывающих небольшую часть видимого изображения.

Поэтому формирование общей картины внешнего мира у них происходит по принципу «сбора пазлов», что позволяет говорить об уникальности строения мозга мух, способного обрабатывать более 100 кадров изображений в секунду.

Как видит муха

Такое устройство зрительных органов не дает возможности концентрироваться мухе на определенном предмете или объекте, а показывает общую картину всего окружающего пространства, что позволяет быстро заметить опасность. Угол обзора каждого глаза составляет 180°, что вместе составляет 360°, т. е. тип зрения является панорамным.

Благодаря такой структуре глаз, муха прекрасно обозревает все вокруг, в т. ч. видит человека, который пытается подкрасться сзади. Контроль за всем окружающим пространством обеспечивает ей 100% оборону от всех неприятностей, в т. ч. и от людей.

Кроме 2-х основных, у мух есть еще 3 обычных глаза, расположенных на лбу в промежутках между фасеточными. Эти органы позволяют им рассматривать близлежащие объекты более четко для распознавания и мгновенной реакции.

Особенности зрительных способностей мух

Зрение у мухи обыкновенной имеет еще множество интересных особенностей:

  • основные цвета и их оттенки мухи различают прекрасно, к тому же они способны отличать и ультрафиолетовые лучи;
  • они совершенно ничего не видят в темноте и потому ночью спят;
  • однако некоторые цвета из всей палитры они улавливают немного иначе, потому условно их считают дальтониками;
  • фасеточное устройство глаз позволяет фиксировать одновременно все вверху, внизу, слева, справа и впереди и дает возможность быстро отреагировать на приближающуюся опасность;
  • глаза мухи различают только мелкие предметы, к примеру, приближение руки, но крупную фигуру человека или мебель в помещении не воспринимают;
  • у самцов фасеточные глаза расположены ближе друг к другу по сравнению с самками, имеющими более широкий лоб;

Мерцательные характеристики

Существует показатель зрительных способностей, который связан с частотой мерцания изображения, т. е. самой ее низкой границей, при которой свет фиксируется как постоянный источник освещения. Называется он CFF — critical flicker-fusion frequency. Его значение показывает то, насколько быстро глаза у животного способны обновлять изображение и обрабатывать зрительную информацию.

Человек способен улавливать частоту мерцания 60 Гц, т. е. обновление изображения 60 раз в сек., которой придерживаются при показе визуальной информации на телевизионном экране. Для млекопитающих (собак, кошек) это критическое значение равно 80 Гц, из-за чего им обычно не нравится просмотр телепередач.

Чем выше значение частоты мерцания, тем больше биологических преимуществ имеет животное. Поэтому для насекомых, у которых данное значение достигает 250 Гц, это проявляется в возможности более быстрой реакции на опасность.

Ведь для человека, приближающегося к «добыче» с газетой в руках с намерением ее убить, движение кажется быстрым, но уникальное строение глаза мухи позволяет ей улавливать даже мгновенные перемещения как бы в замедленном темпе.

По данным биолога К. Гили, такая высокая критическая частота мерцания у мух обусловлена их малыми размерами и быстрым обменом веществ.

Приведенный анализ зрительных способностей позволяет понять, что мир глазами мухи выглядит как сложная система большого числа картинок по аналогии с небольшими видеокамерами, каждая из них передает насекомому информацию о небольшой части окружающего пространства.

Собранное воедино изображение позволяет мухам одним взглядом держать визуальную «круговую оборону» и мгновенно реагировать на приближение врагов.

Исследования ученых таких зрительных способностей насекомых позволили заниматься разработками летающих роботов, у которых компьютерные системы контролируют положение в полете, имитируя зрение мух.

Мухи живут в Матрице времени: Как насекомое видит свернутую газету, перемещающуюся словно в замедленной съёмке и быстро ускользает от опасности

Статью публикует Dailymail:

  • Время идет с той же скоростью, но глаза мухи передают обновления мозгу гораздо чаще, чем глаза человека.
  • Как Киану Ривз в фильме «Матрица» уворачивается от пуль, которые видит как бы в замедленном движении, так и у мухи есть достаточное количество времени, чтобы увернуться
  • Чем меньше животное, тем быстрее его мозг работает и тем быстрее для него летит время
  • Вот почему собаки, как правило не смотрят телевизор, так как для них это просто мерцание огней

Мухи избегают удара таким же образом, который Киану Ривз избегает пуль в фильме «Матрица» – наблюдая всё в замедленном движении. Насекомому та пресловутая свёрнутая с трубочку газета, перемещающаяся со скоростью молнии, кажется двигающейся медленно, как если бы мы видели её двигающейся сквозь густую патоку. Как и у Киану Ривза, у мухи есть достаточно времени, чтобы увернуться. Конечно, время действительно идёт с той же скоростью. Но глаза мухи передют обновления мозгу гораздо чаще, чем глаза человека, и, соответственно, её ментальные процессы протекают гораздо быстрее, чем наши. В результате муха видит объекты медленно движущимися по сравнению с её собственными быстрыми реакциями. Он принимает решение и уходит от опасности гораздо быстрее, чем человек может двигаться с газетой в руках, преследуя её.

Но мухи — не единственный вид, воспринимающий время по-другому.

Исследование, возглавленное Тринити-колледжем Дублина, в сотрудничестве с Университетом Эдинбурга и Университетом Сент-Эндрюса, предполагает, что восприятие времени связано с размером существа.

Например собаки обрабатывают информацию в два раза быстрее человека и именно поэтому они обычно не интересуются телевидением.  Мерцание телевизионного экрана обеспечивает иллюзию неподвижного изображения для человека.

Но зрительная система собаки имеет частоту обновления выше, чем у экрана и поэтому все они видят мерцание огней.

Более мелкие и более проворные существа имеют самую усовершенствованную способность к восприятию информации в единицу времени, говорят исследователи, пишущие в журнале Animal Behaviour.

Другими словами, они могут видеть больше вспышек света в секунду.

Аналогичным образом, кажется, время ускоряется для более крупных существ.

Примером является морская кожистая черепаха, которое воспринимает время в 2,5 раза быстрее, чем человек.

Однако исследователи выдвигают на первый план тигрового жука как одно живое существо, которое не соответствует этому правилу. «Тигровый жук — необычный», — сказал доктор Люк Макналли MailOnline.

«Они принимают очень мало информации со своих глаз и бегут быстрее, чем их глаза могут уследить за их передвижением». «Они по существу ослепляют себя и придерживаются стоп-старт подхода к поиску добычи, мчась к ней в надежде, что они что-нибудь схватят». «Другим странным созданием является рыба-меч.

Когда они охотятся, их восприятие времени почти такое же, как у людей, как они сознательно нагревают свои глаза». «Все остальное время время для них идёт в пять раз быстрее. Это потому, что они воспринимают одну пятую часть информации, которую мы воспринимаем в секунду», — добавил д-р Макналли.

Восприятие времени — это просто еще один аспект эволюции и выживания, полагают ученые.

Ученые пришли к этому мнению, используя ряд быстрых световых вспышек перед животными. Если вспышки достаточно часты, наблюдатель видит их как непрерывное пятно. Но исследователи обнаружили, что скорость мерцания, при которой вспышки как бы сливаются вместе, была различной для разных видов.

«Многие исследователи наблюдали это у различных животных», — сказал д-р Эндрю Джексон из Тринити-колледжа Дублина. «Интересно, что есть большие различия между большими и малыми видами». «Если вы посмотрите на мух — они могут воспринимать мерцание света в четыре раза более быстрое, чем можем мы.

Вы можете себе представить муху, буквально видящую всё в замедленном движении». Животные изучаются в рамках исследования, охватывающего более 30 видов, в том числе грызунов, угрей, ящериц, кур, голубей, собак, кошек и кожистых черепах.

«Наличие глаз, которые посылают обновления мозгу на более высоких частотах, чем наши глаза, не представляет ценности, если мозг не может обработать ту информацию так же быстро», — добавил профессор Грем Ракстон из университета Сент-Эндрюса.

«Эта работа выдвигает на первый план впечатляющие способности даже самых маленьких мозгов животных».

«Мухи не могли бы быть глубокими мыслителями, но они могут принимать правильные решения очень быстро».

По мнению доктора Макналли, некоторые животные могут использовать различия в восприятии времени в своих интересах. «Например, многие виды используют мигающие огни, как сигналы, такие как светлячки и многие глубоководные животные», — сказал он.

«Большие и более медленные хищники могут не быть в состоянии расшифровать эти сигналы, если их визуальная система не достаточно быстра». Доктор Джексон добавил, что это также может объяснить, почему время, кажется, ускоряется, пока мы становимся старше, но двигается медленнее для детей.

КАК ДВИЖЕТСЯ ВРЕМЯ ДЛЯ ЭТИХ СУЩЕСТВ, ПО СРАВНЕНИЮ С ЛЮДЬМИ: Муха — в 6.8 раза медленнее

Макака резус — 2.4 раза медленнее Собака — в 2 раза медленнее Кот — в 1,4 раза медленнее Тигровая саламандра — в 1,3 раза быстрее Черноносая серая акула — в 2,2 раза быстрее Кожистая черепаха — в 2,7 раза быстрее

Европейский угорь — в 2.8 раза быстрее

Сколько кадров в секунду видит человеческий глаз?

FPS – Frames per Second – в переводе с английского означает число кадров в секунду. Появление и развитие телевидения неизбежно поставило вопрос – сколько кадров в секунду воспринимает человеческий глаз? От правильности ответа зависит качество любого просматриваемого видео.

Содержание

Сетчатка глаза состоит из своеобразных палочек и колбочек, которые по-разному воспринимают информацию, однако совмещают её в единое целое.

Палочки почти не чувствуют цветовых различий, однако способны быстро улавливать смену изображения. С этой точки зрения fps палочек довольно высок.

Колбочки, напротив, отлично различают цвета, однако делают это с меньшим fps, чем палочки.

Совместно палочки и колбочки составляют фоторецепторы глаза, которые отвечают за целостность просматриваемого изображения.

Задача вычисления максимального fps, воспринимаемого человеческим глазом, усложняется неравномерным распределением фоторецепторов на сетчатке глаза. В центре количество различных рецепторов примерно одинаково, а вот ближе к краям сетчатки преобладают палочки.

Такое строение имеет логичное обоснования с точки зрения природы. Ещё в те времена, когда нужно было постоянно охотиться, чтобы добыть пищу, человеку необходимо было хорошо улавливать движение боковым зрением. Для этого fps глаза по краям сетчатки увеличено природой естественным образом.

Если же брать во внимание прямой взгляд, то значение будет иметь только общее fps фоторецепторов, расположенных по центру сетчатки глаза.

Десятки учёных на протяжении множества лет изучали этот вопрос. В итоге были выведены минимальные, максимальные, а также средние значения fps, которые нормально воспринимаются человеческим глазом.

Строение человеческого глаза таково, что он «запрограммирован» видеть не отдельные кадры, а картинку в целом. То есть даже если показывать человеку по 1 кадру в секунду в течение длительного промежутка времени, то он станет воспринимать не отдельные изображения, а общую картину движения.

Однако такое fps довольно низкое и создаёт стойкое ощущение дискомфорта. К этому выводу пришли кинематографисты ещё во времена немого кино. Именно тогда частота кадров в секунду была равна 16. Если сравнить немое кино с современными картинами, то будет видна явная разница – возникнет ощущение замедленной съёмки.

В современных картинах признан общемировой стандарт 24 кадра в секунду. Это fps, в котором человеческий глаз видит общую картину во вполне комфортных условиях. Но является ли это пределом?

Казалось бы, если 24 кадра в секунду достаточно для глаза, то есть ли практический смысл добиваться большего? Оказывается, есть. Сегодня в этом может убедиться каждый обладатель компьютера, который хоть раз играл в какую-либо динамическую игру.

При fps равном 24, человеческий глаз видит не только общую картину на экране монитора, но и отдельные кадры.

Вот тут-то и пришлось разработчикам игр поусердствовать, чтобы выяснить, какие же значения оптимальны в этом контексте.

Более современные исследования показали, что человеческий глаз видит и воспринимает изображения со скоростью до 60 кадров в секунду!

В этом случае все движения на экране монитора получаются наиболее плавными и реалистичными.

Как известно, большинство учёных – это люди, которые не останавливаются на достигнутых результатах и проводят всё новые и новые тесты и эксперименты. Учёные-исследователи возможностей человеческого глаза не являются исключением.

Тесты проводятся следующим образом: группе людей предлагается просмотреть несколько видеозаписей с различной кадровой частотой. В некоторые из них в различные промежутки времени добавляются кадры с дефектом – на них изображено что-то лишнее, не вписывающееся в общую картину. Так, например, группе испытуемых показывали видео, дополненное летящим объектом.

Более половины участников эксперимента сумели заметить этот объект. Такой результат не вызывал бы удивления, если бы не одно «но» – fps видео составляло 220 кадров в секунду! И, хотя никто не смог рассмотреть, что же именно было изображено, сам факт отрицать невозможно – человеческий глаз может заметить отдельное изображение на скорости 220 кадров в секунду.

Оказывается, во времена первых фильмов, кинопроекторы оснащались ручным стабилизатором скорости. Специально обученный человек крутил ручку такого кинопроектора, и именно от него зависела скорость смены кадров в фильме.

Если изначально скорость составляла 16 кадров, то потом люди начали произвольно изменять её в зависимости от поведения публики. При показе комедийного изображения и высокой активности зрителей fps увеличивали до 20-30.

Но это повлекло за собой и негативные последствия.

Во время окончания Первой мировой войны владельцы кинотеатров нуждались в повышении прибыли и прокручивали фильмы на высоких скоростях, сокращая итоговую длительность одного сеанса и увеличивая количество сеансов.

Это приводило к тому, что некоторые картины попросту не воспринимались человеческим глазом. В итоге правительства некоторых стран издали законы, в которых ограничивалась максимальная частота прокрутки кадров.

На практике увеличение значения fps помогает «сгладить» изображение – создать эффект непрекращающегося движения.

Актуальность подбора значений обуславливается целью применения эффекта сглаживания.

  • Кинематограф. Для просмотра видео стандартных форматов самым комфортным считается fps в 24 кадра в секунду – именно такую скорость предлагают кинотеатры, любительские видеозаписи и современные мультфильмы;
  • Формат IMAX. Это новый широкоформатный кинематограф, который можно встретить в крупных городах. На данном этапе развития кинематографа он создаёт максимальный эффект погружения в виртуальную реальность. Усилить его могут только экраны с поддержкой 3D изображения. Хотя стандартная частота кадра таким системам вполне подходит, новейшие фильмы для таких экранов создаются с fps, равным 48 кадрам в секунду;
  • Компьютерные игры. Для достижения максимальной реальности изображения используют стандартную частоту – 50 кадров в секунду. В зависимости от скорости Интернет-соединения, загруженности серверов, а также ряда других факторов, частота эта может меняться как в большую, так и в меньшую сторону.
  • Применение больших частот на данном этапе развития техники просто не имеет смысла, хотя время от времени и практикуется специалистами в различных областях.

    Мухи — зрение мухи и почему ее трудно убить

    Мухи живут меньше, чем слоны. В этом нет никаких сомнений. Но, с точки зрения мух, действительно ли их жизнь представляется им гораздо короче? Таким, по сути, был вопрос, который поставил Кевин Гили из Тринити-колледжа в Дублине в своей статье, только что опубликованной в Animal Behaviour. Его ответ: очевидно, нет.

     Эти небольшие существа мухи с быстрым метаболизмом видят мир в замедленном режиме. Субъективное переживание времени является по сути лишь субъективным. Даже отдельные люди, которые могут обмениваться впечатлениями, разговаривая друг с другом, не могут знать наверняка, совпадает ли их собственный опыт с опытом других людей.

    Но объективный показатель, который, вероятно, коррелирует с субъективным переживанием, все-таки существует.

    Он называется критической частотой слияния мерцание CFF — critical flicker-fusion frequency, и является самой низкой частотой, при которой мерцающий свет выдается постоянным источником освещения.

    Он измеряет то, как быстро глаза животных могут обновлять изображения и таким образом обрабатывать информацию.

    Для людей средней критической частотой мерцания является 60 герц (то есть 60 раз в секунду). Именно поэтому частота обновления изображения на телевизионном экране, как правило, установлена на этом значении.

    Псы имеют критическую частоту мерцания в 80 Гц, и поэтому, наверное, кажется, что им не нравится смотреть телевизор.

    Для собаки телепрограмма выглядит как множество фотокадров, которые быстро меняют собой друг друга.

    Высшая критическая частота мерцания должна означать биологические преимущества, поскольку она позволяет быстрее реагировать на угрозы и возможности. Мух, имеющих критическую частоту мерцания в 250 Гц, как известно, трудно прибить. Свернутая газета, которая, как представляется человеку, движется во время удара быстро, мухам кажется такой, будто она движется в мелассе.

    Ученый Кевин Гили предположил, что основными факторами, ограничивающими критическую частоту мерцания у животного, является ее размеры и скорость обмена веществ.

    Небольшой размер означает, что сигналы в мозг проходят меньшее расстояние. Высокая скорость обмена веществ означает, что для их обработки доступно больше энергии.

    Поиск в литературе, однако, показал, что никто раньше не интересовался этим вопросом.

    К счастью, для Гили, этот самый поиск также показал, что многие люди изучали критическую частоту мерцания у большого количества видов по другим причинам.

    Многие ученые так же изучали скорости обмена веществ у многих тех же видов. Зато данные о размерах видов общеизвестны.

    Таким образом, все, что ему нужно было сделать — это построить корреляции и применить с пользой для себя результаты других исследований. Что он и сделал.

    Для облегчения задачи к своему исследованию ученый взял данные, касающиеся только позвоночных животных — 34 видов. На нижнем конце шкалы оказался европейский угорь, с критической частотой мерцания в 14 Гц.

    За ним сразу идет кожистая черепаха, с критической частотой мерцания в 15 Гц. Рептилии вида туатара (гаттерия) имеют CFF в 46 Гц.

    Акулы-молоты вместе с людьми имеют CFF в 60 Гц, а желтоперые птицы, как и псы, имеют CFF в 80 Гц.

    Первое место занял суслик золотистый, с CFF в 120 Гц. И когда Гили построил графики зависимости CFF от размера животного и скорости обмена веществ (которые не являются, что нужно признать, независимыми переменными, поскольку у малых животных, как правило, скорость обмена веществ выше, чем у крупных), он нашел именно те корреляции, которые он и предсказал.

    Получается, что его гипотеза — что эволюция заставляет животных видеть мир в как можно более медленном движении — выглядит правильной. Жизнь мухи может показаться людям кратковременной, но с точки зрения самих двукрылых, они могут доживать до глубокой старости. Помните об этом в следующий раз, когда попробуете (неудачно) прибить очередную муху.

    Сколько кадров в секунду видит человеческий глаз

    Считается, что глаз воспринимает реальность в потоке не более 24 кадров за секунду. Отсюда возникла и кинематографическая рекламная фишка с 25 кадром, который не замечает зрение, но фиксирует подсознание. Так ли это? Узнаем — сколько кадров в секунду видит человеческий глаз.

    История 25 кадра

    Сублиминальную рекламу (а это не что иное, как 25 кадр) разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы.

    Что происходит, когда мы видим 25 кадр?

    • наш глаз действительно различает его, но не фиксирует, ведь мозг не видит в том необходимости;
    • фиксация может произойти, если на экране показан хорошо знакомый зрителю объект (например, крупное зелёное яблоко или короткое слово, набранное большим шрифтом).

    25 кадр кажется невидимым из-за инертности зрения: глаз передаёт сознанию непрерывный визуальный ряд, а когда этот ряд прерывается появлением картинки, чужеродное изображение попросту игнорируется.

    Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом – Вы не сможете различить движение объекта.

    На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует.

    На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить.

    В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения.

    Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз)

    24 кадра в секунду – не предел возможностей человеческого глаза. Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков.

    Возможность видеть зависит и от эмоций: возбуждённый человек способен воспринимать бо́льшее количество информации, чем человек, находящийся в состоянии покоя.

    Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной – 24-30.

    Чтобы не быть голословными, мы предложим Вам один ресурс, наглядно демонстрирующий скорости смены кадров в секунду – http://frames-per-second.appspot.com. Изменяя параметры, Вы сможете установить личную скорость зрения:

    Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Если внимание рассеяно, скорость воспринимаемой реальности падает вплоть до 10 к/с.

    Бо́льшее количество кадров человеческий глаз распознаёт периферийным зрением (а иногда попросту дорисовывает скорость, как в случае с «движущимися» кругами), а то, на что непосредственно направлен Ваш взгляд, лучше воспринимается в замедленной съёмке.

    Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное.

    Сколько глаз у обыкновенной комнатной мухи и какие они?

    Каждый из нас, кто хотя бы раз пытался избавиться от надоедливой мухи, бегая за ней с хлопушкой в руке, прекрасно знает, что задача эта не всегда легко выполнима, а иной раз и невыполнима вовсе. Реакция у серо-черной мелкой квартирантки, что надо. Дело в том, что вы не конкурент ей. Почему? Читайте статью, в которой мы все расскажем о крылатых надоедах.

    • Как видят мухи
      • Строение сложных глаз
      • Количество глаз у мухи

    В чем же превосходит нас эта мушка:

    • в скорости передвижения (более двадцати км в час),
    • в возможности уследить за ее быстрыми перемещениями.

    Как видят мухи

    Мы, представители рода человеческого, считающие себя такими совершенными и всемогущими, обладаем всего лишь бинокулярным зрением, позволяющим концентрировать внимание на конкретном объекте или на определённой узкой области впереди нас, и никак не способны видеть, что происходит у нас за спиной, а вот для мухи это не проблема, так как ее зрение панорамное, видит она все пространство на 360 градусов (каждый глаз способен давать обзор по 180 градусов).

    Кроме того, эти насекомые не просто благодаря анатомическому строению своего зрительного аппарата могут видеть в разных направлениях сразу, но и способны целенаправленно обозревать пространство вокруг себя.

    И обеспечивается всё это расположенными по бокам двумя большими выпуклыми, хорошо выделяющимися на голове насекомого глазами. Столь огромное поле зрения обусловливает особую «проницательность» этих насекомых.

    Кроме того, на опознание предметов им нужно значимо меньше времени, чем нам, людям. Острота зрения у них также превосходит нашу человеческую в 3 раза.

    Строение сложных глаз

    Если рассмотреть глаз мухи под микроскопом, то можно увидеть, что составлен он, как мозаика, из множества мелких участков – фасеток – шестигранных структурных единиц, внешне по форме очень похожих на медовые соты.

    Такой глаз соответственно называют фасеточным, а сами фасетки по-другому называют еще омматидиями. В глазу мухи можно насчитать порядка четырех тысяч таких фасеток.

    Все они дают свое изображение (маленькую часть от целого), а мозг мухи формирует из них, как из пазлов, общую картину.

    Панорамное, фасеточное зрение и бинокулярное, которое свойственно людям, имеют диаметрально противоположное назначение.

    Для насекомых, чтобы иметь возможность быстро ориентироваться и не только замечать приближение опасности, но и успевать ее избежать, важно не хорошо и четко видеть конкретный предмет, а, главным образом, осуществлять своевременное восприятие движений и изменений в пространстве.

    Есть ещё одна любопытная особенность зрительного восприятия мухой окружающего мира, касаемая палитры цветов. Некоторые, такие привычные нашему глазу, из них насекомые не различают совсем, другие выглядят для них иначе, чем для нас, в других тонах.

    Что касается красочности окружающего пространства – мухи различают не только семь основных цветов, но и их тончайшие оттенки, потому что их глаза способны видеть не только видимый свет, но и ультрафиолет, который людям, увы, видеть не дано.

    Получается, что в зрительном восприятии мухи окружающий мир более радужный, чем у людей.

    А ещё эти мелкие и шустрые существа замечают только некрупные и находящиеся в движении объекты. Насекомое не воспринимает такой большой объект, например, как человек. А вот приближение человеческой руки к мухе её глаза прекрасно видят и тотчас передают необходимый сигнал в мозг.

    Также и любую другую стремительно приближающуюся опасность им не составит труда увидеть, благодаря сложной и надёжной структуре глаз, позволяющей насекомому видеть пространство во всех направлениях одновременно – вправо, влево, вверх, назад и вперед и отреагировать соответствующим образом, спасая себя, поэтому их так сложно прихлопнуть.

    Многочисленные фасетки позволяют мухе следить за очень быстро перемещающимися предметами с высокой четкостью изображения.

    Для сравнения, если зрение человека может воспринимать 16 кадров в секунду, то у мухи – 250 –300 кадров в секунду.

    Это свойство необходимо мухам, как уже описано, для улавливания движений со стороны, а также и для собственной ориентации в пространстве при быстром полете.

    Количество глаз у мухи

    Кстати, помимо двух больших сложных фасеточных глаз, у мухи есть ещё три простых, расположенных на лобной части головы в промежутке между фасеточными. В противовес сложным, эти три нужны для того, чтобы видеть объекты на близком расстоянии, т. к. сложный глаз в этом случае оказывается бесполезен.

    Таким образом, на вопрос, сколько же глаз у комнатной мухи, мы теперь можем точно ответить, что их пять:

    • два фасеточных (сложных), состоящих из тысяч омматидиев и необходимых для получения информации о быстро меняющихся в пространстве событиях,
    • и три простых глаза, позволяющих как бы наводить резкость.

    Фасеточные глаза расположены у мух по бокам головы, причем у самок расположение органов зрения несколько расширено (разделено широким лбом), у самцов же глаза находятся немного ближе друг к другу.

    Блоги / Сколько кадров в секунду воспринимает человеческий мозг

    Редактор PC Gamer Алекс Уилтшир (Alex Wiltshire) поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым.

    Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50.

    Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» (мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью).

    Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом.

    Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки.

    Глаза и мозг работают в тандеме

    Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа.

    https://www.youtube.com/watch?v=DXAETdET6TY

    Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное — и наоборот.

    Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки.

    По словам профессора психологии Джордана Делонга (Jordan DeLong), обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие.

    Как отмечает исследователь Эдриен Чопин (Adrien Chopin), скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально.

    Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей.

    Отличия в восприятии движения и света

    Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля.

    В то же время некоторые пилоты истребителей во время тестов могли видеть изображения, которые появлялись на дисплее на 1/250 долю секунды.

    Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение.

    Как отмечает профессор Томас Бьюзи (Thomas Busey), на высоких скоростях (задержка меньше 100 миллисекунд) начинает действовать так называемый закон Блоха.

    Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды.

    По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света.

    Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду (задержка в 2 миллисекунды).

    Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая.

    Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее.

    Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения.

    По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали.

    Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора.

    Сколько вешать в кадрах

    Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду.

    Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь, однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной.

    Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию от картинке при частоте выше 20 Гц. По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше.

    Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино. Тем не менее он понимает, что люди видят разницу между 20 и 60 герцами.

    В чём учёные сошлись, так это в том, что высокая частота кадров несёт по большей эстетический смысл, чем практический, и они не считают, что игры стоит развивать в этом направлении.

    Чопин убеждён, что разработчикам стоит больше думать об увеличении разрешения, а Делонг хотел бы, чтобы создатели мониторов и телевизоров думали о том, как достигнуть максимальной контрастности в картинке.

    Тайны насекомых: сколько глаз у обыкновенной мухи

    Вопрос «Сколько глаз у обыкновенной мухи?» не так прост, как кажется. Два больших глаза, расположенных по бокам головы, можно увидеть невооруженным взглядом. Но на деле устройство органов зрения мухи гораздо сложнее.

    Если посмотреть на увеличенное изображение глаз мухи, видно, что они похожи на соты и состоят из множества отдельных сегментов. Каждая из частей имеет форму шестиугольника с правильными гранями.

    Отсюда и произошло название такого строения глаза – фасеточное («facette» в переводе с французского означает «грань»).

    Похвастаться сложными фасеточными глазами могут многие насекомые и некоторые членистоногие, причем муха далеко не рекордсмен по количеству фасеток: у нее всего 4 000 фасеток, а у стрекоз – около 30 000.

    Ячейки, которые мы видим, называются омматидиями. Омматидии имеют конусообразную форму, узкий конец которой уходит вглубь глаза.

    Конус состоит из клетки, которая воспринимает свет, и хрусталика, защищенного прозрачной роговицей. Все омматидии тесно прижаты друг к другу и соединены роговицей.

    Каждый из них видит «свой» фрагмент картинки, а мозг складывает эти крошечные изображения в одно целое.

    Расположение больших фасеточных глаз у самок и самцов мухи отличается. У самцов глаза близко посажены, а у самок – больше разнесены по сторонам, так как у них имеется лоб. Если посмотреть на муху под микроскопом, то посередине головы выше фасеточных органов зрения можно разглядеть три небольших точки, расположенных треугольником. На самом деле эти точки являются простыми глазами.

    Итого у мухи одна пара сложных глаз и три простых — всего пять. Зачем природа пошла по такому сложному пути? Дело в том, что фасеточное зрение сформировалось, чтобы в первую очередь охватывать взглядом как можно больше пространства и улавливать движение.

    Такие глаза выполняют основные функции. Простыми глазами муху «обеспечили» для измерения уровня освещённости. Фасеточные глаза являются основным органом зрения, а простые – второстепенным.

    Если бы у мухи не было простых глаз, она была бы более медленной и могла летать только при ярком свете, а без фасеточных глаз она ослепла бы.

    Каким муха видит окружающий мир?

    Большие глаза выпуклой формы позволяют мухе видеть все вокруг себя, то есть угол зрения равен 360 градусам. Это в два раза шире, чем у человека. Неподвижные глаза насекомого одновременно смотрят по всем четырём сторонам. Зато острота зрения мухи ниже человеческой почти в 100 раз!

    Так как каждый омматидий является самостоятельной ячейкой, картинка получается сетчатой, состоящей из тысяч отдельных маленьких изображений, дополняющих друг друга. Поэтому мир для мухи – это собранный пазл, состоящий из нескольких тысяч кусочков, причем довольно расплывчатый. Более или менее четко насекомое видит всего на расстоянии 40 — 70 сантиметров.

    Муха способна различать цвета и даже невидимый человеческому глазу поляризованный свет и ультрафиолет. Глаз мухи чувствует малейшие изменения яркости света. Она способна видеть солнце, скрытое густыми облаками. Но в темноте мухи видят плохо и ведут преимущественно дневной образ жизни.

    Еще одна интересная способность мухи – быстрая реакция на движение. Муха воспринимает движущийся объект в 10 раз быстрее человека. Она легко «вычисляет» скорость объекта.

    Эта способность жизненно необходима для определения расстояния до источника опасности и достигается за счет «передачи» изображения от одной ячейки — омматидия к другой.

    Авиационные инженеры взяли на вооружение такую особенность зрения мухи и разработали прибор для вычисления скорости летящего самолета, повторив строение ее глаза.

    Благодаря такому быстрому восприятию, мухи живут в замедленной реальности, по сравнению с нами. Движение, длящееся секунду, с точки зрения человека, муха воспринимает как десятисекундное действие.

    Наверняка люди кажутся им очень медлительными существами. Мозг насекомого работает с быстротой суперкомпьютера, получая изображение, анализируя его и передавая соответствующие команды телу за тысячные доли секунды.

    Поэтому прихлопнуть муху получается далеко не всегда.

    Итак, правильным ответом на вопрос «Сколько глаз у обыкновенной мухи?» будет число «пять». Основные глаза являются у мухи парным органом, как и у многих живых существ. Почему природа создала именно три простых глаза — остается загадкой.

    Понравилась статья? Поделиться с друзьями:
    Все о сантехнике
    1 / 3
    2 / 3
    3 / 3